Courses on topics of interest to engineering students offered on the basis of need, interest, or timeliness. Prerequisites: as determined by the instructor. Restricted to students with juniorstanding or higher. May be repeated for credit. For specific section description, click to the Section Details in VitNet.

Courses on topics of interest to engineering students offered on the basis of need, interest, or timeliness. Prerequisites: as determined by the instructor. Restricted to students with freshman or sophomore standing. May be repeated for credit. For specific section description, click to the Section Details in VitNet.

Independent reading and/or research under the guidance of a engineering faculty member. Refer to the academic policy section for independent study policy. Independent study contract is required. May be repeated for credit.

Students will participate in an off-campus engineering internship, applying course knowledge and skills to problems within a work environment. Internship placements must be established prior to enrollment in this course in consultation with careers office and/or science/engineering faculty member. May be repeated for credit. Permission of instructor required.

Course includes both lecture and lab components per week. Learn about fundamental crystal structures, elastic constants, stress and strain due to mechanical deformation and thermal expansion, and plastic deformation. Use the Schmid factor to determine active slip systems. Learn how to model viscoelasticity and select optimal materials using Ashby plots. Prerequisite: grade of C or higher in 250.

Students learn basic procedural programming skills in a program such as Matlab, and study various mathematical models along with their applications to engineering. Various deterministic, stochastic, and simulation models are covered. Requirements include modeling projects with written reports and class presentations. Prerequisite: acceptable placement score or grade of C or higher in MATH 221. (Equivalent to MATH 365). WCII

Course includes both lecture and lab components per week. Learn about the development and implementation of complex systems and effective management strategies to complete projects. Apply estimation, planning, tracking to optimize systems. Learn to verify and validate designs, manage risk, and formulate technical reviews. Prerequisite: grade of C or higher in MATH 221.

Explore engineering career options through tours of local engineering companies and guest speakers. Sharpen mathematic and technical skills essential to higher level courses. Learn the fundamentals of free-hand sketching and basic drafting instruments, and gain exposure to computer-aided drafting. Prepare for internships and careers by creating a resume and becoming familiar with Viterbo University's career services.

Course includes both lecture and lab components per week. Practice innovation by designing and building solutions subject to physical constraints. Explore the creative side of problem solving, learn the fundamentals of the design process, and strengthen solutions by working in teams. Sharpen real-world presentation skills by giving pitches to "customers". AE

Course includes both lecture and lab components per week. Learn the fundamentals of drafting communication and the visualization of scientific data. Explore the capabilities of computer-aided drafting through the creation and detailing of 2-D drawings and 3-D solid models conforming to engineering drafting standards, and learn to interpret standard engineering drawings. Develop a basic understanding of programming to manipulate data sets and generate presentation-quality plots.